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Reasoning with Uncertainty 

Markov Models 
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System Models with Uncertainty 
in a Probabilistic Framework 

n  The situation of a system can be modeled 
using a probability distribution using 
multiple representations 
n  Joint distributions 
n  Bayesian Networks 

n  The behavior of the system over time can 
be modeled through conditional probabilities 
for transitions and observations and 
situation (or state) representations at 
different points in time 
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Markov Models 
n  Behavior in general systems can depend on 

an infinite history 
n  Potentially infinite memory requirements to store 

system model 
n  Infinitely many transition probabilities 
n  Infinitely many situations have to be stored 

n  Many systems are Markovian and have 
independent, local observations 
n  Markov assumption (1-st order Markov): 

n  Observations only depend on state: 
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Markov Models 
n  A Markov model represents the behavior of 

a system (usually with a finite number of 
states) that has the Markov property 
n  A Markov model for a stationary process 

contains: 
 <S, O, T, B, π> 

n  S={s(1),…,s(n)}: State set 
n  O={o(1),…o(m)}: Observation set 
n  T: P(s(i) | s(j)) : Transition probability distribution 
n  B: P(o(i) | s(j)) : Observation probability distribution 
n  π: P(s(i)) : Prior state distribution 
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Hidden Markov Models (HMM) 
n  The underlying system in a finite state HMM 

can be represented as a Discrete Markov 
Model with transition and observation 
probabilities represented by T and B, 
respectively. 
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Hidden Markov Models (HMM) 
n  In a Hidden Markov Model (HMM) the 

underlying process (i.e. the state) is not 
observable 
n  Observations are linked to the state only through 

the observation probabilities 
n  The behavior of the process is assumed to be 

stationary 
n  HMMs are often used to construct models of 

a process from observations or to determine 
unobservable properties from the 
observations 
n  Model: λ=(T, B,π) 
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HMM – Key Problems 
n  Three problems are of major interest in 

HMMs: 
n  Evaluation Problem: How likely is a particular 

observation sequence? 
n  Estimation Problem: What is the best state 

sequence to explain the observed data ? 
n  Model Construction Problem: What is the best 

model, λ, to explain the observed data ? 
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The Evaluation Problem 
n  The main goal of the evaluation problem is 

to be able to determine the quality of a 
given model λ 
n  The quality of the model can be measured in 

terms of its likelihood to explain (generate) the 
actually observed data. 

n  A better model should have a higher likelihood to 
generate the observed data, i.e. λ1 is better that 
λ2 if  
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The Evaluation Problem 
n  An intuitive way to solve the evaluation 

problem is to condition the probability on 
the state sequence  

n  This method would have to compute the 
likelihood of the observation sequence for every 
possible state sequence and would therefore be 
O(2TnT)  

n  This makes it intractable even for relatively 
concise models 
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The Evaluation Problem 
n  The main problem with the intuitive solution is that 

the different paths include a large number of 
repeated segments 
n  Since the system is Markov, the individual transition and 

observation probabilities in a sequence no longer matter 
once the probability up to a certain point in the state 
sequence is computed 
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The Evaluation Problem – The 
Forward Algorithm 

n  It is more efficient to use dynamic 
programming to solve for the probability 
n  αi(t) is the probability of seeing the first t 

observations in the sequence and ending up in 
state s(i)  

n  The idea is to solve for αi(t) for increasing values 
of t (i.e. to solve for increasing lengths prefixes 
of the observed sequence and obtain the final 
result as:  
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…

s1 
s2 
s3 

sn 

The Evaluation Problem – The 
Forward Algorithm 

n  The Forward algorithm: 
n  t=1: 
n  t+1: 

n  Final: 
 

n  Complexity: O(Tn2) 
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The Evaluation Problem – The 
Backward Algorithm 

n  The same result can be achieved by starting 
from the end of the observed sequence and 
incrementally working towards the entire 
sequence 
n  βi(t) represents the probability that when starting 

from state s(i) at time t, the remainder of the 
observation sequence would be observed 

n  Solution can be obtained as: 
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The Evaluation Problem – The 
Backward Algorithm 

n  The Backward algorithm: 
n  t=T: 
n  t-1: 

n  Final: 
 

n  Complexity: O(Tn2) 
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The Prediction Problem 
n  The main goal of the prediction problem is 

to predict the actual behavior of the system 
(i.e. the underlying state sequence) for a 
given sequence of observations 
n  The likelihood of a prediction can be determined 

in terms of the probability of particular states 
occurring at different times during the 
observation. 

n  The best prediction is a prediction that 
maximizes the probability. 
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The Prediction Problem – First 
Interpretation 

n  Interpret the “best” prediction as the sequence of 
states,               , where    is the most likely state at 
time t 
n  The most likely state at time t: 

n  Problem: The sequence                 might have very low 
probability (or be impossible) because                  could 
be very small (or 0) for some t 
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The Prediction Problem – Second 
Interpretation 

n  To address transition probabilities, the “best” 
prediction can be interpreted as the state 
sequence,             , that has the highest likelihood 
to produce the observation sequence.  

n  The most direct way to compute this would be to compute 
the probability for each sequence and then pick the 
maximum but this would be prohibitively expensive. 

n  Complexity: O(nT*Tn2) 
n  Again, many transitions occur in a large number of 

sequences and should not be recomputed 
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The Prediction Problem - The 
Viterbi Algorithm 

n  The Markov property permits again to 
compute the solution iteratively. 
n  δi(t) represents the probability of the most likely 

state sequence ending in state s(i) corresponding 
to the first t observations. 

n  To address the problem of the addition of a 
symbol changing the state sequence due to a 
low transition probability, Ψi(t), represents the 
predecessor of the end state s(i) along the most 
likely state sequence of length t 

)|,,,,,,(max)( 1
)(

11),,( 11
λδ t

i
ttssi oossssPt

t
……… == −−

)|,,,,,,(maxarg)( 1
)()(

11 λt
i

t
j

tji oosssssPt …… ===Ψ −



© Manfred Huber 2015 19 

The Prediction Problem - The 
Viterbi Algorithm 

n  The Viterbi algorithm: 
n  t=1: 

n  t+1: 

n  Final: 

n  Complexity: O(Tn2) 
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The Model Construction Problem 

n  The main goal of the model construction 
problem is to find the model that is most 
likely to have generated the observed data.  
n  Determine T, B, and π that maximize the 

evaluation probability for a model with n states. 
n  Note: Increasing the number of states will 

generally increase the likelihood but makes the 
model prone to overfitting (i.e. the model will not 
only try to explain the system but also the noise) 

n  There is always a model with T states (one state per 
observation) that perfectly explains the data but is 
generally not a good description of the actual system. 
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The Model Construction Problem 

n  There is no analytic solution for the model 
construction problem but multiple iterative 
approaches exist. 
n  Maximum Likelihood approaches 

n  Baum-Welch algorithm 

n  Gradient-based algorithms 

n  Maximum Mutual Information approaches 
n  Gradient-based algorithms 
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Maximum Likelihood Approaches 

n  Maximum likelihood approaches try to 
compute the model that has the highest 
probability to generate the data 

n  Search over the model parameters is intractable 
n  There is an infinite number of n-state models since the 

model parameters are continuous 

n  Analytic solution of this optimization problem is 
not possible 

!̂ = argmax! P(o1,…,oT | !)
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Maximum Likelihood Approaches 

n  Through marginalization of the maximum 
likelihood formulation we get 

n  Gradient methods can be used to solve the 
problem by computing gradient using the Markov 
property to avoid the exponential sum 

n  Same principle as for Forward, Backward and Viterbi 

n  But: Gradient is highly complex 

!̂ = argmax! P(o1,…,oT | !) = argmax! P(o1,…,oT , s1,…, sT | !)s1,...,sT
!

!!!= argmax! P(o1,…,oT | s1,…, sT ,!)P(s1,…, sT | !)s1,...,sT
!

!!!= argmax! " (s1)P(o1 | s1) P(st | st"1)P(ot | st )t=2

T
#s1,...,sT

!
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Expectation Maximization 

n  Expectation maximization gives a different 
way to solve marginal likelihood optimization 
n  Convert the marginal likelihood to log likelihood 

n  Observed variables: sequence of ot 

n  Observed variables: sequence of st 

n  Parameters: λ 

n  Gradient methods can be used to solve the 
problem by computing gradient using the Markov 
property to avoid the exponential sum 

n  Same principle as for Forward, Backward and Viterbi 

n  But: Gradient is highly complex 

!̂ = argmax! P(o1,…,oT , s1,…, sT | !)s1,...,sT
!

!!!= argmax!log P(o1,…,oT , s1,…, sT | !)s1,...,sT
!
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Expectation Maximization 

n  Expectation maximization solves this 
problem by alternating between two steps 
n  Expectation step: determine expected values for 

hidden variables using the current parameters 
n  Due to Markov property this does not require 

estimating all possible sequences but only 
 

n  Maximization step: Find best parameters 
assuming expectations for the hidden variables 

P(st )!!,!!P(s
(i) | s( j ) )

!!t+1 = argmax! E logP(o1,…,oT , s1,…, sT | !)[ ]
!!!!!!= argmax! P(s1,…, sT | o1,…,oT ,!t )logP(o1,…,oT , s1,…, sT | !)s1,...,sT

!
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Expectation Maximization 

n  Expectation maximization is a general 
algorithm for marginal likelihood maximization 
n  The Expectation and the Maximization steps are 

solves this problem by alternating between two 
steps are generally much easier to solve than the 
gradient ascent problem for marginal likelihood 

n  The application of EM to the model learning 
problem in HMMs is the Baum-Welch 
algorithm. 
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The Baum-Welch Algorithm 
n  The Baum-Welch algorithm is an instance of an 

Expectation Maximization (EM) algorithm to 
determine the maximum likelihood model 
n  Starting from an initial model λ0=(T0, B0, π0)  and an 

observation sequence, the algorithm iterates the following: 
n  Expectation step: calculate the forward and backward 

probabilities for the current model and the actual observation 
sequence. 

n  Maximization step: use the forward and backward 
probabilities from the expectation step and the actual 
observation sequence to determine the optimal estimates for 
the model parameters. 

n  The model derived in the maximization step is always at 
least as good as the previous model since it is based more 
closely on the actually observed data. 
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The Model Construction Problem  
The Baum-Welch Algorithm 

n  Expectation Step: 
n  Calculate the probabilities that, given the 

observation sequence, the system was in state i 
at time t, γi(t),  and the probability that it 
performed a transition from state i to state j at 
time t, ξi,j(t). 
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The Model Construction Problem  
The Baum-Welch Algorithm 

n  Maximization Step: 
n  Assuming that the probabilities of states and 

transitions in the expectation step are accurate, 
calculate the optimal values for the model 
parameters.  

T : P(s(i) | s( j ) ) = # transitions from s( j ) to s i( )

# transitions out of s( j )
=

! j,i (t)t=1

T!1
"

" j (t)t=1

T!1
"

B : P(o(i) | s( j ) ) = # in!state s
( j ) when o(i) was observed
# in state s( j )

=
" j (t)t=1,ot=o

( i )

T
"

" j (t)t=1

T
"

# : # (s(i) ) = " i (1)
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The Model Construction Problem  
The Baum-Welch Algorithm 

n  The Baum-Welch algorithm iterates until the 
model no longer changes (or improvement 
drops below a specific threshold) 
n  Algorithm is guaranteed to converge to a local 

optimum (no guarantee for global optimum) 
n  Initial model selection is important for: 

n  Convergence speed 
n  Quality of final model found (by determining which local 

optimum will be found) 

n  To learn values for prior π(s), observations 
have to contain multiple sequences 
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Markov Models 
n  Markov models represent a powerful mechanism to 

model stochastic processes that have finite state 
and observation sets. 

n  Hidden Markov Models (HMM) provide techniques to 
automatically 
n  Evaluate a model 

n  Predict the underlying state sequence from observations 

n  Learn a model from observed data 

n  Markov models are more difficult to use if the state 
space is not finite. 


